Microbial Copper-binding Siderophores at the Host-Pathogen Interface.

نویسندگان

  • Eun-Ik Koh
  • Jeffrey P Henderson
چکیده

Numerous pathogenic microorganisms secrete small molecule chelators called siderophores defined by their ability to bind extracellular ferric iron, making it bioavailable to microbes. Recently, a siderophore produced by uropathogenic Escherichia coli, yersiniabactin, was found to also bind copper ions during human infections. The ability of yersiniabactin to protect E. coli from copper toxicity and redox-based phagocyte defenses distinguishes it from other E. coli siderophores. Here we compare yersiniabactin to other extracellular copper-binding molecules and review how copper-binding siderophores may confer virulence-associated gains of function during infection pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathogenic adaptations to host-derived antibacterial copper

Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu(+)) in its reduced form and copper (II) (Cu...

متن کامل

Regulation of mammalian siderophore 2,5-DHBA in the innate immune response to infection

Competition for iron influences host-pathogen interactions. Pathogens secrete small iron-binding moieties, siderophores, to acquire host iron. In response, the host secretes siderophore-binding proteins, such as lipocalin 24p3, which limit siderophore-mediated iron import into bacteria. Mammals produce 2,5-dihydroxy benzoic acid, a compound that resembles a bacterial siderophore. Our data sugge...

متن کامل

Iron acquisition from Pseudomonas aeruginosa siderophores by human phagocytes: an additional mechanism of host defense through iron sequestration?

Chelation of iron to iron-binding proteins is a strategy of host defense. Some pathogens counter this via the secretion of low-molecular-weight iron-chelating agents (siderophores). Human phagocytes possess a high-capacity mechanism for iron acquisition from low-molecular-weight iron chelates. Efficient acquisition and sequestration of iron bound to bacterial siderophores by host phagocytes cou...

متن کامل

Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene.

A gene (yacK) encoding a putative multicopper oxidase (MCO) was cloned from Escherichia coli, and the expressed enzyme was demonstrated to exhibit phenoloxidase and ferroxidase activities. The purified protein contained six copper atoms per polypeptide chain and displayed optical and electron paramagnetic resonance (EPR) spectra consistent with the presence of type 1, type 2, and type 3 copper ...

متن کامل

The siderophore yersiniabactin binds copper to protect pathogens during infection

Bacterial pathogens secrete chemically diverse iron chelators called siderophores, which may exert additional distinctive functions in vivo. Among these, uropathogenic Escherichia coli often coexpress the virulence-associated siderophore yersiniabactin (Ybt) with catecholate siderophores. Here we used a new MS screening approach to reveal that Ybt is also a physiologically favorable Cu(II) liga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 290 31  شماره 

صفحات  -

تاریخ انتشار 2015